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In the last twelve years, there has been considerable effort expended to obtain numerical
solutions for the partial differential equations which describe the isothermal reactions between
a porous sphere of solid reactants and surrounding fluid reactants. In such models, the PDEs
for the conservation of solid reactant reduce to temporal ordinary differential equations. The
transient responses of the conservation of fluid reactant equations are so much faster than
those of the solid reactant equations that the pseudo-steady state assumption is often invoked.
This reduces the conservation of fluid reactant equations to spatial ODEs with split boundary
conditions. It is shown here that accurate and efficient numerical solutions can be obtained if
the temporal derivative terms are retained in the fluid reactant PDEs and a stiff system solver
is used to integrate the resulting discretized set of coupled nonlinear temporal ODEs. This
approach is called the method of lines. In most cases, especially those with steep fronts in the
spatial profiles, this solution method is less costly than that with the pseudo-steady state
assumption. The method of lines strategy is described in detail for the problem with two solid
reactants and one fluid reactant. In a moderately steep case, the solution of the coupled time-
dependent equations is shown to be more than 100 times faster than solution by alternate
application of a two-point boundary-value problem solver to the pseudo-steady state fluid
equations and explicit integration of the temporal solid equations. In very steep cases, the
solution of the time-dependent equations is accomplished economically, while the alternative
method failed to produce acceptable solutions.

1. INTRODUCTION

In the course of constructing a practical numerical dynamic simulation of the
combustion retorting of oil shale, Sohn and Braun [1, 2] have developed analytical
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models and numerical solutions for transient, isothermal, irreversible reactions
between one or two porous solids and one or two surrounding fluids. In each case,
their goal is to obtain very fast approximations to the overall conversions and selec-
tivities, in which spatial distributions are absent. But assessing the validity of these
approximations requires also a direct numerical simulation of the given model (with
spatial variational included). That simulation is the subject of this paper.

The developments in [1, 2] each lead to an analytical model consisting of a set of
conservation of fluid reactant partial differential equations coupled to a set of conser-
vation of solid reactant temporal ordinary differential equations. It is not difficult to
justify a pseudo-steady state assumption, which converts each PDE into a spatial
ODE two-point boundary-value problem. This approach was followed in [1], and
also in unreported work [3] by Braun and Sohn preliminary to [2] on the model
given there. For those combinations of configuration and parameters which do not
produce extremely steep profiles, Sohn and Braun successfully obtained solutions by
alternating between a boundary-value solution method (for the fluid(s)) and an
explicit time stepping method (for the solid(s)). In [1], the boundary-value problem is
solved by an iteration on linear approximations [4], while the time stepping is done
by the classical Runge—-Kutta scheme. In [3], the boundary-value problem is solved
by the COLSYS code (5], while the time stepping is done by assuming a constant
fluid profile over the time step and then analytically integrating the temporal ODEs.

If the transient forms of all of the equations are retained, all of the differential
equations have time derivatives on the left-hand side. The solution strategy proposed
for these equations is the method of lines, in conjunction with a suitably powerful
ODE system solver—LSODE [6]. Discretization of the spatial variable, with finite
differencing of the spatial derivatives, produces a set of ODEs for which the initial
value problem is posed. This ODE system is stiff (i.c., it has rapid decay modes), and
therefore the selection of a suitable solution method is crucial. The LSODE package
solves stiff and nonstiff ODE systems, and in the stiff case it makes explicit use of the
Jacobian matrix, allowing for either a full or banded form for this matrix. In all of the
cases presented here (and for one-dimensional time-dependent PDE systems
generally), with suitable ordering of the unknowns, the Jacobian is rather tightly
banded and the associated linear algebraic computation is quite efficient. The
resulting program is a straightforward statement of the problem which is easy to
create, understand, debug, and change. Solutions to the problem were obtained at
considerably reduced cost compared to methods previously employed, and the
method accommodates considerably greater steepness. We believe that the method of
lines approach is useful for these and similar systems, for cases with steep profiles
and cases with non-steep profiles.

The models being solved here differ from those in [1, 3| only in that the latter have
the fluid reactant time derivatives replaced by zero. Because of the short time scale of
the fluid reactions this replacement does not appreciably affect the accuracy of the
answers obtained, but it drastically affects the efficiency of obtaining a numerical
solution, because it requires the solution of a nonlinear, spatial, two-point boundary-
value problem at each time step. The cost of taking a time step with LSODE on the
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corresponding ODE problem is much smaller. Moreover, LSODE dynamically varies
both the time step and the order of accuracy so as to meet specified error tolerance
conditions on all unknowns. The explicit integration method used in [1, 3] did not
have such error controls.

In what follows, the proposed method will be developed for the one-fluid/two-solid
problem of Sohn and Braun [2]. It will then be applied to that problem and also to
the two-fluid/one-solid problem of Sohn and Braun [1]. Similar applications to the
one-solid/one-fluid problem of Sohn and Szekely [7] and a nine-fluid/ten-solid model
presently being developed will be reported elsewhere. All of these models originated
with the LLNL Oil Shale Project.

2. SIMULTANEOUS REACTIONS BETWEEN TwO SOLID REACTANTS
AND ONE FLUID REACTANT

2.1. The Continuous Equations

Sohn and Braun [2] have modeled the irreversible, isothermal reactions between a
two-reactant, solid porous pellet and one included fluid reactant, in the course of the
development of a numerical dynamic simulation of the retorting of oil shale. Their
governing equations were obtained from expressions for the conservation of the fluid
reactant and the individual solid reactants. They assumed pseudo-steady state fluid
reactant behavior, equimolar counter-diffusion, constant effective diffusivities and
isothermality. In dimensionless form, their model can be written as the following
three differential equations on a spatial interval 0 < # < 1, with dimensionless time
variable t* > 0:

dwgfort=(1—wp)y,  Bwp/or* =p(1 —w,) v,
and
My/on* + (F,— 1) n~"'dy/dn — 2F 0’ [(1 — wp) + 1B(1 — wp)| y = 0,
with the boundary conditions
p(1,t5)=1  and  (ay/on)(0,1¥) =0,
and initial conditions
wy(1, 0) = wp(1,0) = 0.

Here wy; and w, are the two local solid reactant conversion fractions, y is the
normalized fluid concentration, and the coordinate # is a normalized radius. The
quantity F, is a geometrical constant, with F, = 3 for a spherical pellet (the only case
considered here).

The equation for w is singular at n =0. However, if we demand that y be a
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reasonably smooth function of # at # =0, the singularity is only an apparent one.
The two radial derivative terms represent a Laplacian operator in  in terms of the
radial coordinate ». For y to have a Laplacian at # =0, symmetry demands that
dy/én =0 there, and continuity demands that the Laplacian reduce to F,0%w/on’
there. To see the latter directly, suppose (at fixed ¢*) that v has a Taylor series

v =y, +ny, + 10y, + 0(n*),
with
dwjon =y, + 2ny, + O(n*),
*wlon® = 2y, + O(n).
Then the boundary condition requires y, = 0, and thus

(1/n) dw/on =2y, + O(n).

This means that
*wfon* + (F,— 1) n~" dw/only = F, 0 w/on*|,. 2.1

In place of the above time-independent equation for v, a time-dependent PDE is
substituted, for reasons given above. After this replacement, and after adjustment for
the apparent singularity at # = 0, the continuous model consists of

dwgfor* = (1 —wp)y,  dwp/ot* =B(1 —wp) v, (22)
and
2aF,0* oyjor* = o yjon* + (F,— 1)n~ " ow/on
—2F, 0% [(1 — wp) + yB(1 — wp)] v, (23)
except at # =0, where

2a0° dy/ot* = 6 y/on® — 26%[(1 — wy) + yB(1 — w,)] w. (2.4)

The coefficient o is a constant, and « = 10~ has been used throughout. There is only
a partial physical basis for this choice, but in fact, any sufficiently small value of «
will produce the same results, nearly equal to the pseudo-steady state results, because
the pseudo-steady state assumption is valid. The boundary conditions are still

w(l,t*)=1 and  (3y/on)0, t*)=0, (2.5)

The initial conditions need not constitute a solution of the boundary value problem;
they need only be such that the initial-boundary value problem is well posed. Thus we
will take the initial-profile .of y to be uniformly 1. This profile can be expected to
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evolve quickly into one that solves (or very nearly solves) the two-point boundary
value problem for y. Thus the initial conditions are

w(m0)=1,  w(n,0)=w,(n,0)=0. (2.6)

The instantaneous accumulated conversions are expressed as

1 1 .
X, = jo wydv  and  X,= jo w, dv, 2.7)

where

dv=F,n">"'dn.

2.2. Method of Lines Solution

The numerical procedure we will use to solve the system of differential equations
(2.2) to (2.6) is the method of lines. Basically, this consists of discretizing the spatial
variable #, rewriting each of the differential equations as a set of ordinary differential
equations in the corresponding discrete dependent variables, and solving the resulting
ODE system with a suitable general purpose solver. In the case of the partial
differential equations (2.3) and (2.4), one must be careful to form discrete approx-
imations not only to the spatial derivatives in the equation, but also to the boundary
conditions. The details of these approximations depend on whether the discrete
representation is done by way of finite differences or a more involved technique such
as finite elements or collocation. We have chosen finite differences.

To be specific, consider some partition of the # interval into M subintervals,

O=no<m <y <y =1

This partition need not be uniform. We will associate with each #; the discrete values
v/, w}, and w}, all of which are functions of the continuous time variable ¢*. At any
interior point 7;, we represent the spatial derivatives of y by the following standard
central difference formulas. For the second derivative, we use

. Ty =y
st (22 (222 o
/on ln, nn M1 —1, =1 (M2 —Mizip2)
Miv12 = (M40 +1)/2, Ni—1p=(m;+ 77,'-1)/2-

For the first derivative, we use

—n. Jo___ i1 —n. J+1__
3W/377|"2W{,E ( ’71+1 ’7] )(W W )+( '7, 'Ij—l )(W : W >,
’ Niv1— N n;— Ny Niv1— Mzt Hiz1—M;
2.9)

which is the derivative, at #,, of the quadratic fitted to the three consecutive data
points centered at #,. Note that in both cases, the derivative at #, involves values at
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M;., and #,_, as well as at #,. For this reason alone special considerations must be
made at the boundaries (j =0 and j = M).
At the boundary #,, = 1, we are given ¢y =1 by (2.5). Hence no differencing at

An appropriate difference formula for d*w/on® at n =0 can be derived in two
different (but equivalent) ways. One is to invoke (2.8) at j=0, after adding an
artificial mesh point #_, = —#,. The result is

Owfontly=(w' — 2" + v~ 1)/(m)".
If the condition dw/dn|, = 0 is then represented in discrete form by
yol =yl
then the above simplifies to

Orylon? |y =yo,=2(y" —v°)/(m)* (2.10)
A second derivation is to represent y near # =0 by a quadratic,

q(n) =g, + 19, + 1°q,,

and determine its coefficients by requiring that

q0)=y°  ¢'(0)=0, qn)=v"
The result is
q=v",  ¢=0.  g=u"—v")/m)
We then define ¢”(0) = 2¢, as the desired approximation, giving (2.10).

When finite difference expressions are substituted into the right-hand side of the y
equation (2.3) at each #; (using (2.4) for j=0), and the corresponding partial
derivative dy/adt* is identified as a total derivative dy’//dt*, we have M + 1 coupled
ODEs for the w’/. Of course, the ODE for y’ also involves the solid concentrations
w} and wj. The latter constitute two more sets of M + 1 variables each, which
satisfy the ODEs obtained directly from (2.2). To summarize, we have the following
ODE system in 3(M + 1) dependent variables, in which the dot denotes differen-
tiation with respect to ¢*

W = (g, + (F, — D wi/n;— 2F,0%[(1 — w}) + yB(1 — w})] w')/2aF 0°
(=12, M—1),

¥ = (v, — 20°[(1 — wp) + ¥B(1 — wp)] ¥°)/ 200,

y" =0,

oh=(1—w)) v (j=0,1,., M),

ol =1 — wi) v’ (=0, l,.. M).

(2.11)
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The initial conditions at ¢t* =0 for all of these variables are taken directly from those
posed for the continuous dependent variables in (2.6),

V0)=1, 0}0)=w)0)=0 ().

The choice of M and the #; is important, in that the mesh must be fine enough to
resolve the relevant spatial structures in the solution at any given time, but coarse
enough to keep the cost of the solution within reason. Specifically, the profiles of w,
and w,, often have fronts (e.g., see Fig. 2) along which the majority of the reaction
process is occurring. The fronts move from #=1 toward # =0. Their steepness
depends heavily on the physical parameters, Empirically, we have found that the
steepness of the steepest front present is monotonically related to a*yB. (This can be
anticipated from the fact that 6?8 is a measure of the ratio of the rates of chemical
reaction and intraparticle diffusion for the fluid.) Thus the mesh needs to be designed
accordingly. As to the distribution of the #;, only two different choices have been
used—equal-radius intervals,

77,' =.]/M’ J=O’ la-"a M;

and equal-volume intervals,

n;= (j/M)'?, Jj=0, 1., M.

For any given M, the equal-volume mesh is finer at the larger radii. For the equal-
radius mesh though, simplifications can be made in the finite difference formulas. (An
alternative approach, with adaptive grid selection, is discussed in Section 2.4.)

The instantaneous accumulated conversion X, in (2.7) is calculated by numerically
integrating, from # =0 to # = 1, the function

Integrand = 3w, 7,

in the case of a uniform grid, or integrating, from v =0 to v =1, the function of
v=n* given by

Integrand = w,,

in the case of an equal-volume grid. (The integrand data is then known on a uniform
mesh in both cases.) The numerical integration is done using a four-point forward
difference algorithm from Beckett and Hurt [8]. Similar expressions apply to X,,.

Having specified the mesh, the ODEs, and the initial values, we are faced with an
initial value ODE problem for a system of N = 3(M + 1) dependent variabies, (2.11).
The ODE system may be written in the abstract form

y=dy/dt=f(ty) (2.12)
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{dropping the * on ¢* for the moment). Actually, there is no explicit dependence on
time in the right-hand side vector f, but the numerical solution method will gain no
advantage from that fact. Numerous general purpose ODE solvers are available for
problems of this general form. A prime criterion in choosing a solver is the issue of
stiffness. Roughly speaking, the system (2.12) is stiff if it contains one or more rapid
decay processes, corresponding to one or more time constants that are very short in
comparison to the total time span of interest.

A rapid decay process can be crudely inferred from large negative coefficients in
the function f; specifically from a large negative value for a diagonal element 8f"/dy"
of the Jacobian matrix gf/dy. In the case of the equation for y’, wherever w), and w?,
are still relatively small, we can see a diagonal Jacobian element of about
—10%(1 + yB), which corresponds to a time constant of 10~*/(1 + y8) < 10~*. On the
other hand, the time constants in the w{;, equations are all at least 1, and the relevant
total time span is always found to exceed 1. Thus we can conclude that problem
(2.11) is definitely stiff.

The reason that the stiffness question must be resolved is that the efficiency of the
numerical solution process for (2.12) depends in a dramatic way on whether the
problem is stiff, and how it is solved if it is stiff. Suppose that a problem is stiff, with
a smallest decay time constant 7, while the time scale of the actual solution curves
(beyond a possible initial fast transient) is t,,,, and the “stiffness ratio”
S =T ax/Tmin 1S large compared to 1. (For the present problem, we expect that
S > 10*) A step-by-step numerical integration method for the problem should require
time step sizes comparable to 7,,, i.e. just small enough to resolve the solution
curves to reasonable accuracy. But if a solution is attempted with a method that is
not suited for stiff systems, it will require time steps comparable to 7,,.- Thus, while
each time step may be considerably less costly for a nonstiff method, the number of
steps needed to complete the solution may be prohibitively large because of stiffness.

Stiff ODE methods for general use invariably use an implicit time step formula,
and make use of the Jacobian matrix J = ¢f/dy to solve that implicit formula. Thus it
is important not only to identify the problem as stiff, but also to formulate it in such
a way that the required matrix operations are done as economically as possible (in
terms of both memory and arithmetic).

The LSODE solver [6] handles both stiff and nonstiff ODE initial value problems
of the general form (2.12). In the stiff case, it must repeatedly solve linear systems
whose coefficient matrix is closely related to J. Options are provided whereby J is
treated either as a full (dense) matrix or a banded matrix, and in both cases, the user
may supply J in the form of a subroutine or have LSODE approximate J by
difference quotients. Since the solution of a banded linear system is much more
economical than the solution of a full one of the same order, it pays to reorganize the
problem if this will change a function f with broad coupling into one having tightly
banded coupling.

For the present problem, such an opportunity is clearly present. If the variables are
ordered as the ODEs were listed in (2.11) (the y/, then the wj, then the w}), the
coupling is very broad. The time derivative of a variable y’, whose index in the y
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vector is j + 1, would be coupled to the variable w},, whose index is 2(M + 1) +j + 1.
In contrast, if the variables are ordered first by species and then by grid point, i.e.,

y= W’ 0y, ®f ... yM, 0¥, 0¥)7, (2.13)

then the largest value of k for which y' involves y'*¥ is k = 3 (e.g., y* = y' is coupled
to y' = y° and to y” = w?). Thus we will adopt this ordering for y from here on. The
resulting Jacobian is said to have half-bandwiths (lower and upper) both equal to 3,
with a full bandwidth of 7.

2.3. Numerical Results

Various numerical calculations were done on the initial value ODE problem
described above. All of the calculations reported here were performed on a Cray-1
computer. Initially, a fixed grid with 40 equal-radius intervals (M = 40) was used
with a set of parameters which dictated a solution without a moving front, that is, no
steepness. Solutions were obtained from four options of LSODE (four values of its
method flag argument MF) suitable for stiff systems:

MF = 21: storage of the full Jacobian and explicit (user-supplied) expressions
for all nonzero elements of J;

MF = 22: full Jacobian stored with numerically approximated elements;

MF = 24: storage of the central band of the Jacobian with explicit expressions
for the nonzero elements; and

MF = 25: a banded Jacobian with numerically approximated elements.

From the point of view of ease of use, it is simplest to code a potentially stiff problem
for solution by option MF = 22, while option MF = 24 requires the most from the
user.

Another important input to LSODE is the error tolerance information. A mixture
of relative and absolute error tolerances is allowed, and these are applied to the error
committed on each integration step. Thus some conservatism in the choice of the
tolerances is needed. Since the problem is already fairly well scaled, we chose the
same value for both relative and absolute tolerances, the same for all variables.

The resuits summarized in Table I are for the case ¢ =100, y=8=1, and
demonstrate the efficiency of the banded integrator with user-supplied Jacobian
elements for this nonsteep case. The same is true for steeper and stiffer problems.
Correct initial profiles developed quickly in all cases, typically within the first 1% of
the time span of interest and well before any significant motion of the fronts. The use
of general difference equations (2.8) and (2.9) in place of simpler ones based on a
uniform grid slows execution slightly, but permits use of equal-volume spacing.
Results for the equal-volume mesh are given in Table II and show the dependence of
cost on mesh size, number of output times, and error tolerance. (Run times here
include editing for output purposes, such as the calculation of the conversions X, and
X,, and hence depend on the number of output times.) Note that the execution time
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TABLE 1

Numerical Performance of LSODE Stiff Options when o = 100 and
y=pf=1in a Model for the Oxidation of Char in Spent Oil Shale

LSODE option (MF) 21 22 24 25 25
Grid spacing ER ER ER ER ER
Number of intervals 40 40 40 40 40
Number of output times 40 40 40 40 40
Integer work area 143 143 143 143 143
Real work area 16258 16258 2359 2359 2359
Perstep error limit 10°° 10°° 10°° 10°* 10°°
Total number of steps 212 212 212 212 212
Function evaluations 288 4962 288 554 554
Jacobian evaluations 38 38 38 38 38
Exit conversions

W, 0.8723 0.8723 0.8723 0.8723 0.8723

wp 0.8723 0.8723 0.8723 0.8723 0.8723
CPU seconds (Cray—1) 3.703 3.824 1.406 1.421 1.428

Note. The final time is t* = 100. ER denotes equal-radial increment mesh spacing. Options 24 and
25 consume much less memory than options 21 or 22 and execute faster. Option 24 is slightly faster
than option 25. The results are indistinguishable. All derivatives are approximated by simplified
differences which depend on uniform grid intervals, except in the last column, where Eqgs. (2.8) and (2.9)
were used, at a slight cost increase.

TABLE II

Numerical Performance of LSODE Stiff Options when ¢ = 100 and
y=pf=1 in a Model for the Oxidation of Spent Oil Shale.

LSODE option 25 25 25 25 25
Grid spacing EV EV EV EV EV
Number of intervals 40 20 20 20 10
Number of output times 40 40 40 20 1
Integer work area 143 83 83 83 53
Real work area 2359 1219 1219 1219 649
Perstep error limit 10-° 10-* 102 10 ? 10 ?
Total number of steps 232 231 52 58 62
Function evaluations 591 639 117 203 244
Jacobian evaluations 39 43 15 17 21
Exit conversions

Wy 0.8721 0.8726 0.8725 0.8724 0.8734

W, 0.8721 0.8726 0.8725 0.8724 0.8734
CPU seconds (Cray-1) 1.549 0.831 0.337 0.261 0.100

Note. EV denotes equal-volume increment mesh spacing. The first column, when compared to the
fourth column of Table I, shows the cost of using equal-volume grid spacing in this nonsteep case.
Columns two through five show performance gains that are possible when integrator and formulation
parameters are varied.
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TABLE III

Numerical Performance of LSODE (MF = 24) for a Variety of Cases in a
Simulation of the Oxidation of Char in Spent Oil Shale

Reaction modulus

a? 0.01 0.01 100 0.01 100

y 1.00 1000 1.00 1000 1000

B 1.00 1.00 1.00 1000 1000
Final time 2.00 2.00 100 5.00 50000
LSODE option 24 24 24 24 24
Grid spacing EV EV EV EV EV
Number of intervals 20 20 20 20 20
Number of output times 15 15 15 15 15
Integer work area 83 83 83 83 83
Real work area 1219 1219 1219 1219 1219
Perstep error limit 1073 10~* 107° 1077 1075
Total number of steps 61 201 218 1113 2797
Function evaluations 78 264 305 2116 5775
Jacobian evaluations 17 38 39 328 1096
Exit conversions

wp 0.8637 0.8637 0.8712 0.6585 0.8750

wp, 0.8637 1.0000 0.8712 0.8751 0.8750
CPU seconds (Cray-1) 0.231 0.581 0.645 3.455 9.463
COLSYS/explicit
CPU sec (Cray-1) 47.5 58.4 42.1
Validation Matches Matches Matches M =40

solution solution solution and 80
of [3} of [3] of [3] agree
M =40
and M = 80

for this case has been reduced to Q.1 sec (last column of Table I} without serious

than the solution in [3], obtained using COLSYS and explicit analytical integration,
and further speedup is possible (although the COLSYS/explicit solution can also be
speeded up somewhat). In general, large reductions in execution time can be achieved
when sufficient effort is devoted to optimizing the solution parameters.

Finally, a variety of cases was run, all with MF = 24 and 20 equal-volume zones.
The results are given in Table III, along with run times for the COLSYS/explicit
method of {3] (in the first three cases). The last two cases have considerably steeper
solutions than the others, and are more costly to compute accordingly. Figures 1 and
2 show the results for one of the steeper cases, namely ¢?=0.01, y=8= 1000
(fourth column of Table IIT). A solution for this case by the COLSYS/explicit
method was completed, but at a much higher cost than for the other three cases,
because of the moving steep front. Figure 1 shows the profile of y at various times ¢*,
and shows how y adjusts by ¢* =0.0156 to a very non-constant profile consistent
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Fic. 1. Transient response of the normalized fluid concentration y in the model for the oxidation of
char in spent oil shale with parameters 6> =0.01 and y = § = 1000. See column 4 in Table III. These
results were obtained using a 20-interval grid with equal-volume spacing and LSODE option MF = 24.
Note the rapid recovery from an inappropriate (flat) initial profile and the tendency to advance unevenly
with time. This behavior is typical of the steeper cases.

with its pseudo-steady state approximation. Figure 1 also illustrates how the y profile
moves quite unevenly in time in a steep case. Figure 2 gives the profiles of w,, w,),
Xz, and X, where X, and X, here denote the volume-integrated conversions of w,
and w,,, respectively, from the center to radius 7.

For all cases with steep fronts, the equal-volume mesh is preferred, because of its
fineness at larger radii. There is no need for mesh fineness at small radii, because the
solution data sought is obtained (and the integration stopped) well before the fronts
reach the origin.

2.4, Application of an Adaptive Grid Technique

For large values of o2yB, the fronts in the spatial profiles for w, become so steep
that the solution jumps from about O at one grid point to about 1 at the adjacent
point. This produces a staircase-shaped plot of accumulated w, conversion X, vs.
time with as many steps as there are grid points across which the front has moved.
For a 20-interval grid with equal-volume spacing this means about 10 steps and a
step height at the conversion values of interest of 2.8 %. A 40-interval grid has about
17 steps and half the uncertainty of the 20-interval case but takes 3.5 times as long to
execute and requires 1.9 times as much working space for the integration. In the
steepest case investigated, 0%yf = 108, the w, front width is usually less than the
interval size in a 40-interval grid. Further reduction in the staircase-shaped distortion
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FiG. 2. Transient response of the solid reactant fractional conversions in the model for the oxidation
of char in spent oil shale with 6> = 0.01 and y = = 1000 (obtained from the same run as the results in
Fig. 1). Shown here are (a) the solid reactant conversion fraction w,, (b) solid reactant conversion
fraction w,,, (c) accumulated conversion fraction X, and (d) accumulated conversion fraction X;. In
each case, curves are given for times t* =0.5, 1.0, 1.5,..., 5.

would require a finer grid and increase the execution costs still further. Alternatively,
an adaptive grid strategy can provide the finer-mesh benefits at a fraction of the cost
increase. With this motivation, the finite-difference, adaptive-grid subroutines of Hu
and Schiesser [9] were used in combination with LSODE to solve the steepest front
case, o’y = 10% By specifying that two new grid points be inserted into every
original interval to the right of any original solution point at which the magnitude of
the second spatial derivative of y exceeds a fixed threshold, and into the two intervals
to the left of that point as well, results were obtained whose accuracy was equal to
that of a 60-interval fixed grid. This asymmetric application of Hu and Schiesser’s
subroutine ANUGB better adapted it to left-moving fronts, when the grid is
numbered from left to right.

The execution times and minimum memory requirements for 20- and 40-interval
fixed grid solutions and a 20-interval basic-grid adaptive solution are shown in Table
IV. Figure 3 shows the resulting conversion X, vs. time profiles for the same three
cases. Further grid refinement is practical only in the adaptive case. The adaptive
grid approach offers greater opportunity for tuning and can be expected to show
improved performance as experience accumulates.
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TABLE 1V

Comparison of Fixed and Adaptive Grid Solution Costs.
The Relative Solution Qualities Can Be Judged from Fig. 3.

Grid type Fixed Fixed Adaptive
Grid spacing EV EV ER
Number of grid points 21 41 21to 33
average = 28.5
Execution time (Cray—1 CPU sec) 13.03 46.32 29.92
Size of minimum working arrays 1428 2748 2220
o

.75

.50

40-interval

20~interval

[T9]
N
: Adaptive
o
o T T T I T 1
0.0 10.0 20.0 30.0 40.0 50.0 x 10°
time t*

Fic. 3. Effects of grid coarseness on X, vs. time profiles in the steepest case, o’ = 100,
y=f=1000. The front that develops in the w, profile is extremely steep, with values between 0 and 1
for w, rarely occuring at grid points. As a result, the conversion X, is the integral of a square wave
which moves intermittently. This motion becomes smoother as the grid (at least in the vicinity of the
front) is made finer. The adaptive grid results are as accurate as those from the fixed 40-interval grid
and considerably less costly to obtain (in both storage and CPU time). The results from a fixed 20-
interval grid are much more uneven.
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3. SIMULTANEOUS REACTIONS BETWEEN ONE SOLID AND
Two FLuID REACTANTS

Sohn and Braun [1] also modeled the isothermal reaction between a porous solid
and two fluid reactants. In dimensionless form, this model can be written as

V¥y,—2F,0i(1 —w)y, =0, (3.1A)

and

V*2y.—2F,0(1 —w) y =0, (3.10)

with boundary conditions
oy,fon=0oyc/on=0  at n=0
and

oy, /on=Sh(y — ¥,  Owe/on=Sh(l—y,,—vy:) at n=1

for the two fluid reactants, and

ow/ot* = (v, + ¥l — w) 3.2)

for the solid reactant. Here v ,, and Sh are constants, and in what follows, y,, = 0.2
and Sh = 10. The operator V*? is the Laplacian in terms of the normalized radial
coordinate #, that is,

V*2 = (& /on’) + (F,— 1) n~'(0/n).

As before, F, is a geometrical constant which is 3 here, representing spherical pellets.
After discretization, Sohn and Braun obtained numerical solutions by the following
process:

1. At time t* =0, solve the two-point boundary-value problems, Eqs. (3.1),
with @ = 0, by iterative solution of analytically obtained local linearizations of (3.1);
see Newman [4].

2, Using the values for y, and y, at time £* = 0, obtained in Step 1, Eq. (3.2)
is integrated numerically using an explicit fourth-order Runge—Kutta algorithm from
t*=0to t*=4d.

3. The values for w at t* =4 are used in new solutions of the two-point
boundary-value problems (3.1) to obtain y, and y at time t* = 4.

4. Steps 2 and 3 are repeated, producing v ,, v, and w as functions of # and
%, at t* =4, 24,....

581/52/3-7
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Accurate solutions can be expected to require more than a small number of iterations
for precise convergence of the two-point boundary-value problems and small time
steps for the temporal integration.

Alternatively, the time-dependent terms in the conservation of fluid reactant
equations can be retained, that is,

aF,0% 0y, Jor* =V *2y, —2F 0i(1 — w) v, (3.3A)
aF,0% 8y /ot =V* y.—2F,0(1 — w) v, (3.30)

and
bw/or* = (y, + yc)(1 — o), (3.4)

subject to the same boundary conditions, and the initial conditions

v,(n0)=1, ve(7,0)=1, w(n,0)=0.

In order to separate the amount of solid consumed by the reaction with fluid 4 from
the total solid consumption, Sohn and Braun also solve

ow,fot* =y (1 — w), (3.4A)

subject to

w,(n,0)=0.
In each case the conversion, X, of the solid reactant is obtained from Eq. 22 in [1],

1
X=F, Jo wntr~ dn.

The same method of lines approach as before can be applied to this problem.
Equations (3.3A), (3.3C), and (3.4) were discretized and a three-point centered finite
difference algorithm was used to replace the partial derivatives with respect to 7. The
geometry (spherical) and parameters were those of Fig.2 in {l]| (6,=0.1, .= 1)
with g = 0.0002. A 40-interval grid with equal-volume spacing was used, resulting in
164 coupled first-order ODEs to be integrated by LSODE (MF = 25). The results are
plotted in Fig. 4, together with the analytical approximation from [1].

The numerical simulation of the one-solid/two-fluid reactions was a minimal adap-
tation of the two-solid/one-fluid formulation. The differential equations were modified
and the new boundary conditions imposed. The solution shown in Fig. 4 consumed
1.85 sec of Cray—1 CPU time. Further development of the model could be expected
to improve the results and lower the execution time.
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OVERALL CONVERSION
[=]
123
=
< [
x &
* MOL
2
& CONVERSION DUE TO REACTION A
[1]
§ MOL
S T T T T ]
0.000 1.600 3.200 4.800 6.400 8.000

TIME

FiG. 4. Comparison of method of lines solution (MOL) and an analytical approximation to the
exact solution from Sohn and Braun [1]. The discrepancies arise from the coarseness of the equal-
volume grid at small radii. The nature of the w profiles is such that the solutions at the inner points have
considerably more influence on the conversion integrals than in the earlier two-solid/one-fluid example.

'

4. OTHER SOLID/FLUID REACTANT COMBINATIONS

The reactions simulated above are characterized by nondimensionalized concen-
trations and local fractional conversions which result in models without discon-
tinuities. Alternatively, Sohn and Szekely [7] proposed a model for the reaction
between one porous solid and one reactant gas in terms of a nondimensionalized
concentration and a normalized position of the reaction front within the grains that
make up the sphere. Formulated in this way, the solutions of the differential
equations have discontinuous first derivatives arising from the total consumption of
the grains. The numerical solution of this problem by the method of lines and
LSODE is described by Sohn, Johnson, and Hindmarsh [10]. For the particular case
of a solid sphere composed of slablike grains, an exact solution is available; see
Ishida and Wen |11} or Sohn and Szekely [7]. The numerical results matched the
analytical solutions closely for a wide range of gas—solid reaction moduli.

At the opposite extreme is a ten-solid/nine-fluid, variable temperature model of a
sphere of raw oil shale, with a more rigorous treatment of the fluid species transport
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to eliminate dependence on the assumption of equimolar counter-diffusion. Work on
this model is in progress.

5. DISCUSSION

The models of Sohn and Braun, which simulate irreversible, isothermal reactions
between porous solid(s) and included fluid(s), consist of differential equations in both
space (one-dimensional) and time. Our experience with these models exemplifies the
benefits of reformulating the differential equations of the model with an eye toward
the relative merits of the numerical solution procedures called for by alternative
formulations. At one extreme is a model in which time derivatives for all state
variables are present. At the other extreme is a model in which pseudo-steady state
assumptions are made wherever possible, leaving (in our cases) a mixture of initial-
value ODEs in time and boundary-value PDEs in space. This mixed ODE/PDE
model was the one actually provided to us by the modelers, and a fully time-
dependent form was reconstructed later. In other situations the order of occurrence is
likely to be reversed. Depending on the physical parameter values, the fully time-
dependent model can be considerably stiff in time, and the solutions to both models
can involve considerable steepness in spatial fronts.

It is important to verify that both forms of the model are equally valid as accurate
representations of the physical problem posed. That is, they give essentially the same
answers. If they did not, then one would have to question the validity of the pseudo-
steady assumptions made. In fact, there are situations where pseudo-steady state
assumptions can be rigorously justified. However, there are also problems where they
are questionable, and then the difficulty of validating the assumptions is a separate
argument in favor of the fully time-dependent model, when the latter is the form one
is starting from. A serious pitfall exists in that one might validate the assumptions for
nominal parameter values, but later use the mixed model for parameter values where
it was not valid, thereby getting incorrect answers unknowingly. For all cases in
which comparisons were made, the answers were in fact the same from the two
models of the solid-fuel reaction problems studied here.

Stiffness in the fully time-dependent model is a necessary consequence of the
agreement between the two models. This is because the time constants associated with
those PDEs which are put into pseudo-steady state must be relatively very small for
that replacement to be valid. The degree of stiffness depends mainly on the coefficient
a multiplying the time derivative term or terms. But, within a wide range of (small)
values, the accuracy and efficiency of the fully time-dependent solution is largely
independent of the value of a.

The numerical approaches called for by these two formulations, given the present
state of methods and software for initial-value and boundary-value ODEs, are quite
different. The fully time-dependent model can be easily treated by the method of
lines—discretizing in space, substituting finite differences for spatial derivatives,
getting temporal ODEs for all variables, and solving the resulting ODE system
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(initial value problem) with a suitably powerful ODE solver. If the ODE system is
stiff (which is always the case here), then the choice of a solver is important, and
some care must be exercised in its use (in proper ordering of the ODEs, for example).
LSODE was found to be completely adequate as the initial value solver for the
problems considered here. (The earlier GEARB package could be used equally well,
but is somewhat less flexible.)

On the other hand, the mixed ODE/PDE model requires a two-point boundary-
value ODE solver (e.g., COLSYS) to be called at each given point in time, alter-
nating with some time stepping procedure for both the ODE and PDE variables. The
ODEs here are not stiff, except for very large values of § (and even then the stiffness
arises in a simple linear manner), so the time stepping need not be very sophisticated.
In fact, for reasons of practicality, the time stepping scheme must be a simple explicit
one, except in special cases, in order to avoid calls to the boundary-value solver more
than once per time step. (In the case that the temporal ODEs are linear, a simple
implicit scheme could be used, but at the cost of some additional complexity in inter-
facing with the boundary-value solver.) In fact, the time stepping used was either
classical explicit Runge—Kutta or explicit analytical approximation based on constant
fluid profiles over each time step.

The failures of the mixed ODE/PDE solution approaches for some cases can be
attributed to a combination of factors. One is the tendency of the ODE for w), in
(2.2) to become stiff when f§ is large, causing the Runge-Kutta solution to be
unreliable. (The analytical integration of (2.2) with fixed y does not suffer from this
difficulty, but it relies on the linear constant-coefficient form of the ODE.) Another
factor is the difficulty of solving the boundary value problem when the fronts become
steep. In fact, the solutions using COLSYS failed to be completed only because of
storage demands due to steep fronts. But the cost of those solutions also rose sharply
with the steepness of the steepest front present. Finally, the errors introduced by alter-
nating between the ODEs and the PDEs is difficult or impossible to measure or
control, and the stability properties of the procedure in the presence of these errors
are unknown. Using suitable heuristic time step controls, the actual observed errors
were acceptable, however. The situation resembles that in operator-splitting solutions
of other types of problems, where reliability depends more on empirical experience
and ad hoc controls than on any analysis of errors and stability.

It should be noticed that the mixed solution procedure relies heavily on the fact
that the spatial variation is only one-dimensional. In two or three dimensions, the
boundary-value PDE problem becomes much harder to solve, while the method of
lines extends in a straightforward manner.

The selection of the fully time-dependent form of the model was based on the much
greater simplicity of the corresponding numerical method. The method-of-lines
solution, with LSODE and banded treatment of the matrices involved, was more
easily 'able to handle the stiffness in the ODE system than COLSYS was able to
handle the steepness in the solutions. Steepness must also be accounted for in the
choice of mesh for the LSODE solution, but the cases studied here did not require a
detailed resolution of the steep fronts beyond that needed to calculate the total
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conversions. It was also found that greater resolution, if needed, could be obtained
with the adaptive grid package ANUGB of Hu and Schiesser. With ANUGB the
frequent restarts of LSODE increased the run time, but much less so than would have
resulted from achieving the same front resolution with a fixed grid.

The effort required to set up the two solution procedures is much the same, but
favors the method-of-lines solution. Both the boundary-value problem solver and the
initial value problem solver require the user to supply routines that define the
equations in the model, and the presence of time derivative terms in one model adds
nothing to this task. Both approaches require a spatial mesh to be specified and some
care in its selection. The mixed model solution was done with an ad hoc time step
scheme, requiring some programming effort not involved in the other approach. Most
of the LSODE solutions were done with a user-supplied Jacobian, which required
some extra setup effort, but the (easier) option of using a difference quotient Jacobian
approximation performs nearly as well. The method-of-lines program is certainly
straightforward by comparison, and is flexible and easy to debug.

The issue of computational efficiency heavily favors the fully time-dependent
model. This can be seen from the run times reported, but can also be predicted from
the nature of the methods. Each time step of the LSODE solution involves the
solution of a nonlinear algebraic system (the implicit time step formula), which is
done by a modified Newton method. The latter makes use of a high-order prediction
as the first guess, and it economizes on matrix operations by using the same value for
the Jacobian over several time steps (without sacrificing accuracy in the solution).
Each step of the mixed model solution involves the solution of a two point boundary
value problem for one or more spatial ODEs. Although a first guess for the solution
is available from the previous time step, it is not as good a guess to the resulting
algebraic problem as in the LSODE solution, and each iteration in the boundary
value solver is generally more expensive (e.g., because of mesh adjustments) than that
in LSODE. The difficulty or absence of time step error control in the mixed solution
also means that it may require many more time steps to get acceptably accurate

N O W— [} [

moderate to high steepness.

In fairness to the mixed solution approaches, it must be admitted that relatively
little fine tuning was done on the algorithms used there. For example, the boundary
value problem arising at a given time step could be solved on the same mesh as was
used on the previous step, unless significant spatial error is detected, and it might also
make use of saved Jacobian information. Algorithmic improvements of this type
would certainly narrow the gap in efficiency between the two approaches, but would
not close it, we believe, and would make the setup effort considerably greater for the
mixed solution.

While this discussion centers around the Sohn/Braun models for solid-fluid
reactions, we believe the issues raised are quite general. In summary, there seem to be
numerous reasons for preferring a model consisting of fully time-dependent PDEs
over one with pseudo-steady state assumptions made (resulting in some time-
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independent PDEs). These reasons are based on model accuracy, simplicity of
solution strategy, and efficiency of computing the solutions. The numerical method of
lines is a powerful technique for solving time-dependent PDE systems. We believe its
potential has not yet been fully appreciated in the scientific computation community.
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